

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Electronic Devices

Time: 3 hrs.

1

2

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Write the figures of the resulting orbitals when isolated atoms brought together and explain the characteristics. (10 Marks)
- b. Obtain the relationship between mobility and hall coefficient in a p-type bar placed in a magnetic field in the Z-direction. (10 Marks)

OR

- a. Derive the equation which relates current density and mobility in a semiconductor in an applied electric field. (10 Marks)
 - b. A silicon bar 2µm long and 200µm² in cross sectional area is doped with 1.5×10^{17} /cm³ phosphorus. Find the current at 300K with 30V applied voltage. How long does it take an average electron to drift 2µm in pure silicon at an electric field of 80V/cm? Also calculate the time required at 10^5 V/cm. Assume mobility of electrons is 0.1350m²/Vsec. Also assume that saturation of electron drift velocity for silicon is 10^7 cm/s for the electric field above 10^5 V/cm. (10 Marks)

Module-2

- **3** a. Show the effect of bias at a pn junction on transition region width, electric field, electrostatic potential, energy band diagram partic flow and current direction under the following conditions:
 - i) Equilibrium ii) Forward bias iii) Reverse bias. (10 Marks)
 - b. Illustrate the care and issues to be considered in the design of solar cells. (10 Marks)

OR

- 4 a. Explain Avalanche break down and obtain equation for the electron multiplication factor.
 - b. Derive the relationship between the open circuit voltage and optic generation rate starting from the expression for the optically generated illuminated pn junction. (10 Marks)

Module-3

- 5 a. Show the hole and electron flow in a pnp transistor with proper biasing. (08 Marks)
 - For the circuit shown in Fig.Q.5(b) calculate β , I_B and I_C. Given that $\tau_p = 18\mu s$, and $\tau_t = 0.2\mu s$. What happens to the output current when I_B increases and β increases?

Fig.Q.5(b) 15V + 10VFig.Q.5(b) 15V + 10V

> (06 Marks) (06 Marks)

(10 Marks)

c. Explain the concept of base narrowing in a $p^+ - n - p^+$ transistor. 1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

b.

OR

- 6 Obtain the Ebers-Moll equations and represent the same in the model form. a. (12 Marks)
 - Describe the switching effects in a CE transistor circuit. b. (08 Marks)

Module-4

- Analyze the effect on gate-to-channel-space charge region and IV characteristics for the 7 a. following conditions in a JFET:
 - Zero gate voltage of a small drain voltage i)
 - ii) Zero gate voltage of a large drain voltage
 - Small V_{DS} value and small reverse-biased gate voltage. iii) (10 Marks)
 - Draw the energy band diagram in an MOS capacitor structure for the following cases: b.
 - i) p-type substrate for a positive gate bias
 - ii) p-type substrate for a large positive gate bias
 - iii) n-type substrate for a positive gate bias.

(10 Marks)

OR

- Write the small signal equivalent circuit of a JFET, ideal low frequency small signal 8 a. equivalent circuit and ideal equivalent circuit including rs. (10 Marks)
 - Show the channel formation in the MOS structure and I_D versus V_{DS} curve for the following b. cases:
 - i) $V_{gs} > V_t$ and small V_{DS} value

 - ii) $V_{gs} > V_t$ and large V_{DS} value iii) $V_{gs} > V_t$ and $V_{DS} = V_{DS}$ (sat)

(10 Marks)

Module-5

- What are the fabrication steps used in the fabrication of pn junctions? (10 Marks) a.
 - With figures, describe the complementary MOS structure. b.

(10 Marks)

- 10 Illustrate the evolution of integrated circuits. a.
 - Explain the formation of resistors in integrated circuits. b.

(10 Marks) (10 Marks)

9